FLUX DIFFUSION DURING MAGNETIC ACCUMULATION
IN NARROW CAVITIES
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An equation is obtained for the flux diffusion during the compression of a uniform magnetic
field in a flat gap. Calculations are made for fast and slow pumping of the cavity by the in-
itial current and for a constant linear increase and an increase proportional to vt in the
initial current. It is shown that the flux losses are considerable even for large magnetic
Reynolds numbers; the flux losses depend essentially on the pumping time and depend
little on the shape of the pumping current pulse,

1. The compression of magnetic flux within a conducting circuit is called magnetic accumulation.
Here the induction L of the circuit decreases while the current I and the magnetic field B increase, The
energy of the magnetic field is
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Here L is the initial induction of the circuit, Iy is the initial current in it, A = Lo/L is the turning
coefficient of the circuit, and F = LI/Lgl, is the fraction of the magnetic flux remaining in the cifcuit.

The energetic possibilities of magnetic accumulation are limited by the fraction F of flux retained in
the circuit, in connection with which the study of flux losses represents an important problem in the analysis
of the operation of powerful magnetic accumulation devices, the so-called MA generators,

A large number of problems on the diffusion of a magnetic field into a stationary conductor are pre~
sented in [1]. The solutions of these problems are carried over to magnetic accumulation through the cal-
culation of the effective depth of the skin layer and the use of the result on the conservation of the sum of
the flux in the MA generator and the conductor 2].

Among the problems of magnetic accumulation considered are the compression of a field by two
infinite flat conductors moving toward each other with constant velocity [3] and a number of self-similar
axially symmetrical problems with v =g /27r {4]. Here the conductivity was assumed to be constant. It
is shown that toward the end of the compression both in the plane and the axially symmetrical problems
all the flux passes into the conductors.

2. Among the different types of MA generators, the flat generators ]5,6] are distinguished by sim-~
plicity of construction and good energetic characteristics.

By neglecting the nonuniformity ofthe fieldinthe cavity of a flat MA generator andthe fluxlosses at
the site of encounter of the walls of the cassette with the busbars, one can adopt the following model of an
unprofiled flat MA generator (Fig, 1). A uniform magnetic field is compressed in the flat cavity of an ideal
piston moving with the detonation velocity D between two parallel conductors. The other side of the cavity
is closed by an ideal conductor, which follows from the symmetry of the construction of the generators
described in [5, 6]. The uniformity of the field in the cavity permits one {o consider flux leakage only in
the direction perpendicular to the conductor surface. The conductors can be assumed to be unbounded
since the thickness of the skin layer is small compared with the thickness of the bus bars of the generator,
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The field in the conductor at ¢ = const is determined by the solution of the diffusion equation [7].
By = Pt Byy (2.1)
which satisfies the following induction equation and initial condition at the boundary x = 0 of the cavity:
d 2
T =1 B () =5 (A —1) Beleg (2.2)
B (z, 0) = B, (z) (2.9)

Here the time is relative to the time of motion of the compressing piston 14/D, x is relative to the
distance a between the bus bars, the magnetic field is relative to the field B at the moment of capture of
the flux,andthe flux is relative to the initial flux Byl in the cavity.

The parameter 4 = 4m0a’D/c’l o represents the magnetic Reynolds number, By setting
Bylyg = — 4 (1) . (2.4)

one can find the solution of Eq, (2.1) which satisfies the conditions (2.3) and (2.4) and from it calculate the
field at the conductor boundary
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By solving this integral equation relative to q(t) one can obtain the value Bxlxzo and after substitution
into the condition (2.2) one can arrive at an equation for the field in the cavity
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After integration of (2,5) with respect to time
¢
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Here the flux in the cavity F = (1-t)B(t) is introduced. By multiplying the identity
t
B O S
t= “S Vei—0¢—o

by (1 +t=27) B (7) and integrating it with respect to 7 from 0 to t we obtain
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After double differentiation with respect to time we obtain with the help of (2.5) and (2.7) the equation
for the flux in the cavity

2F aF
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The initial conditions are
FO =1, FO=f(0 2.10)
The latter condition is obtained from (2.5) with
iﬁ o 7-TF - the limiting transition t =0, B({t) —~1.
. With the change in the variable 1—t = x* Eq.
7 2.8) is reduced to
F
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the solution of which has the form
F(2) = Fu™® 0 L Fiz L F 2V TR a® 22/V W) -+ Fi() (2,12)

Here ¥(z) is the probability integral and Fi(x) is the partial solution of the nonhomogeneous equation
(2.11) satisfying the null conditions at x = 0. It is easy to write Fi(x) in quadratures and, using (2.6) and
(2.9), to show that Fy(x) = 0(x4) as x —0, i.e., at the end of the compression the flux in the cavity is

F@=F/+ Fyo+ 4Fa + 0 (2

Thus, toward the end of the compression two constants (Fx, F,')which determine the flux leakage are
generated from the initial distribution of the field in the walls of the cavity.

3. In the experiments the initial field inthe generator cavity is produced by a current source which
pumps the generator. The initial field distribution By(x) in the cavity walls depends on the pumping time
and the shape of the pumping current pulse and is determined by the solution of Eq. (2.1) for the given law
of variation of the field at the conductor boundary.

Two limiting cases of pumping can be distinguished: slow pumping (T — *) when the field penetrates
deep into the cavity walls and By(x) = 1, and rapid pumping (t; — 0) when the field does not penetrate into
the conductor and By{x) = 0 while at the boundary Bylo) = 1. With slow pumping the solution of Eq. (2.8) has
the form

Fy (1) =2<1—%)B*(t)+—l2 ——V% Vi + 8(11/—— arcsin Vi —
—2 V1j+(1—t)+4]/-;~(1—%) VIi=t( —B, 1)
By(y=e" 1 —0 2 Vi/ Vi)

The function Bx(t) describes the decrease in the field in a stationary flat gap bounded by a conductor
without a field.

At the end of the compression with slow pumping the flux remaining in the cavity is
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In the case of rapid pumping
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At the end of the compression

Pry=(1+8/u) B (1) — 4V 7
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The ratio of flux losses in the two cases of pumping with# >> 1 is

(1_’Fr#)/(1'—Fs*)=s/2

The dependence F(x) for 4 =1, 2, 5, 10, 20, 50, and 80, corresponding to curves 1-7, is presented in
Fig. 2 (slow pumping) and Fig, 3 (rapid pumping).

The rapid pumping leads to the greatest flux losses and the slow pumping to the least, The other
cases of pumping by a current increasing with time give

Fro < Fy < Fsy

Numerical calculations were made of the flux diffusion during pumping with a constant current, with
a current increasing in proportion to vVt and with a linearly increasing current. The calculation was con-
ducted in two stages. First the partial solution Fi{x) of the nonhomogeneous equation (2.11) with null con-
ditions at x = 0 was sought by the standard Runge—Kutta program with automatic choice of the step and
only the values Fyand Fy' at the point x = 1 were derived. Then by substituting these values into the
general solution (2.12) the constants Fx and F «' were determined from the initial conditions (2,10), and Eq.
(2.11) was solved again with F(0) = Fx and F'(0) = F«', For all the cases of pumping examined F ' =

2 VW;;,LF*o

The dependence of the flux losses on the pumping time is shown in Fig. 4 where graphs are presented
for 4 =1 (lower group of curves) and K = 50 (upper group of curves) and ty = 10'8, 0.1, 0.5, 1, 5, and 10t
with pumping by a constant current. The largest value of £y corresponds to the top curve in Fig. 4.

The effect of the shape of the pumping pulse on the flux losses is illustrated in Fig. 5. The curves
presented in it pertain fo tg=1and # =1 {two lower curves) and ¥ = 10 (upper curves) with pumping by a
constant current (upper of two adjacent curves) and by a linearly increasing current (lower curves). For
pumping with a current increasing in proportion to vt the graph of F(x) is located between the curves of
pumping with a linear and a constant current,

The flux losses depend weakly on the shape of the pumping current pulse and are determined mainly
by the magnetic Reynolds number p and the pumping time to.

In the model examined the flux losses proved to be considerable even for large y. For example,
0.23 = 1—Fx =0.45 at # =50 and 0.56 = 1= Fx =0,72 at =10, Such losses are connected with the com-
pression of the magnetic field in the cavity and with the strong increase in the field gradient at the conduc-
tor boundary.

The model of flux losses described can be used for estimates of this parameter for flat MA generators
and must be improved for an examination of the last stages of the compression when the geometry of the
field compression changes and the problem becomes close to that described in [3].
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